Filomat 29:4 (2015), 879–886 DOI 10.2298/FIL1504879E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Decompositions via Generalized Closedness in Ideal Spaces

Erdal Ekici^a, Özlem Elmalı^a

^a Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey

Abstract. The aim of the present paper is to introduce and study the notions of \mathcal{RP}_I -sets, \mathcal{RPC}_I -sets and \mathcal{RC}_I -sets. Properties of \mathcal{RP}_I -sets, \mathcal{RPC}_I -sets and \mathcal{RC}_I -sets are investigated. Also, various decompositions in ideal spaces are established via generalized closedness with \mathcal{RP}_I -sets, \mathcal{RPC}_I -sets.

1. Introduction and Preliminaries

Recently, the notions of weakly I_{rg} -closed sets [4], strongly-*I*-*LC* sets [6], pre^{*}_I-open sets [3] and *I*-*R* closed sets [1] and properties of them have been introduced and studied in the literature. In the present paper, the notions of \mathcal{RP}_I -sets, \mathcal{RPC}_I -sets and \mathcal{RC}_I -sets and properties of \mathcal{RP}_I -sets, \mathcal{RPC}_I -sets and \mathcal{RC}_I -sets are introduced and studied. Meanwhile, various decompositions in ideal spaces are established via generalized closedness with the notions of \mathcal{RP}_I -sets, \mathcal{RPC}_I -sets and \mathcal{RC}_I -sets.

Throughout the present paper, (X, τ) or (Y, σ) represent topological space on which no separation axioms are assumed unless explicitly stated. The closure and the interior of a subset *T* of a topological space *X* will be denoted by *Cl*(*T*) and *Int*(*T*), respectively.

An ideal *I* on a topological space (X, τ) is a nonempty collection of subsets of *X* which satisfies (1) If $S \in I$ and $N \subset S$, then $N \in I$, (2) If $S \in I$ and $N \in I$, then $S \cup N \in I$ [8]. Let (X, τ) be a topological space with an ideal *I* on *X*. A set operator (.)* : $P(X) \rightarrow P(X)$ where P(X) is the set of all subsets of *X*, said to be a local function [8] of *S* with respect to τ and *I* is defined as follows:

 $S^*(I, \tau) = \{x \in X : N \cap S \notin I \text{ for each } N \in \tau(x)\}$

where $\tau(x) = \{N \in \tau : x \in N\}$ for $S \subset X$.

A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I, \tau)$, said to be the \star -topology and finer than τ , is defined by $Cl^*(S) = S \cup S^*(I, \tau)$ [7]. They are denoted by S^* for $S^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$. Meanwhile, (X, τ, I) is called an ideal topological space or simply an ideal space for an ideal I on X [8].

A subset *T* of a topological space (X, τ) is called regular open [11] (resp. regular closed [11]) if T = Int(Cl(T)) (resp. T = Cl(Int(T))).

²⁰¹⁰ Mathematics Subject Classification. Primary 54A05, 54C10

Keywords. \mathcal{RP}_{I} -set, $\mathcal{RP}_{C_{I}}$ -set, \mathcal{RC}_{I} -set, decomposition in ideal space, strongly-*I*-*LC* set, weakly I_{rg} -closed set, pre^{*}_I-open set. Received: 26 October 2013; Accepted: 25 December 2013

Communicated by Dragan S. Djordjević

Email address: eekici@comu.edu.tr (Erdal Ekici)

Definition 1.1. A subset T of an ideal topological space (X, τ, I) is called

(1) a strongly-*I*-LC set [6] if there exist a regular open subset *S* and a ★-closed subset *N* of *X* such that *T* = *S* ∩ *N*.
(2) *I_g*-closed [2] if *T** ⊂ *N* whenever *T* ⊂ *N* and *N* is an open subset of *X*.
(3) semi-*I*-open [5] if *T* ⊂ *CI**(*Int*(*T*)).
(4) *I_{rg}*-closed [10] if *T** ⊂ *N* whenever *T* ⊂ *N* and *N* is a regular open subset of *X*.
(5) *I_g*-open [2] (resp. *I_{rg}*-open [10]) if *X**T* is an *I_g*-closed subset (resp. an *I_{rg}*-closed subset) of *X*.

Definition 1.2. Let (X, τ, I) be an ideal topological space. A subset T of (X, τ, I) is called

(1) a weakly I_{rg} -closed set [4] if $(Int(T))^* \subset N$ whenever $T \subset N$ and N is a regular open subset of X. (2) a weakly I_{rg} -open set [4] if $X \setminus T$ is a weakly I_{rg} -closed subset of X. (3) pre_1^* -open [3] if $T \subset Int^*(Cl(T))$. (4) pre_1^* -closed [3] if $X \setminus T$ is a pre_1^* -open subset of X. (5) I-R closed [1] if $T = Cl^*(Int(T))$.

Remark 1.3. ([4]) The following diagram holds for a subset T of an ideal topological space (X, τ, I) :

an I_q -closed set	\longrightarrow	an I _{rg} -closed set	\longrightarrow	a weakly I _{rg} -closed set
1		Ū.		Ť
$a \star$ -closed set		\longrightarrow		a pre [*] -closed set
↑				
an I-R closed set				

Theorem 1.4. ([4]) The following properties are equivalent for a subset T of an ideal topological space (X, τ, I) : (1) T is a weakly I_{rg} -closed subset of X,

(2) $Cl^*(Int(T)) \subset S$ whenever $T \subset S$ and S is a regular open subset of X.

2. Decompositions in Ideal Spaces

Definition 2.1. A subset *T* of an ideal topological space (X, τ, I) is said to be an \mathcal{RP}_I -set if there exist a regular open subset *S* and a pre_I^* -closed subset *N* of *X* such that $T = S \cap N$.

Remark 2.2. Let (X, τ, I) be an ideal topological space and $T \subset X$. The following properties hold:

(1) If T is a pre_1^* -closed subset of X, then T is an \mathcal{RP}_I -set

(2) If T is a regular open subset of X, then T is an \mathcal{RP}_{I} -set.

(3) These implications are not reversible as shown in the following example.

Example 2.3. Suppose that $X = \{x, y, z, w\}$, $\tau = \{X, \emptyset, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $I = \{\emptyset, \{x\}, \{w\}, \{x, w\}\}$. Then $T = \{y, z, w\}$ is an \mathcal{RP}_{I} -set in X but it is not a regular open subset of X. Also, $N = \{y, z\}$ is an \mathcal{RP}_{I} -set in X but it is not a pre $_{I}^{*}$ -closed subset of X.

Theorem 2.4. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I) :

(1) *T* is a pre_{I}^{*} -closed set,

(2) *T* is an \mathcal{RP}_{I} -set and a weakly I_{rg} -closed set.

Proof. (1) \Rightarrow (2) : Let *T* be a pre^{*}_{*I*}-closed subset of *X*. Since *T* is a pre^{*}_{*I*}-closed set, by Remark 1.3 and 2.2, *T* is an \mathcal{RP}_{I} -set and a weakly I_{rq} -closed subset of *X*.

 $(2) \Rightarrow (1)$: Let *T* be an \mathcal{RP}_I -set and a weakly I_{rg} -closed subset of *X*. Since *T* is an \mathcal{RP}_I -set, it follows that there exist a regular open subset *S* and a pre $_I^*$ -closed subset *N* of *X* such that $T = S \cap N$. We have $T \subset S$. Since *T* is a weakly I_{rg} -closed subset of *X*, then $(Int(T))^* \subset S$. Meanwhile, we have $T \subset N$. Since *N* is a pre $_I^*$ -closed set, then $Cl^*(Int(T)) \subset N$. This implies that $Cl^*(Int(T)) \subset S \cap N = T$. Thus, *T* is a pre $_I^*$ -closed subset of *X*. \Box

Definition 2.5. A subset T of an ideal topological space (X, τ, I) is said to be (1) pre_I^* -clopen if T is a pre_I^* -open subset and a pre_I^* -closed subset of X. (2) an \mathcal{RPC}_I -set if there exist a regular open subset S and a pre_I^* -clopen subset N of X such that $T = S \cap N$.

Theorem 2.6. Let (X, τ, I) be an ideal topological space and $T \subset X$. If T is an \mathcal{RPC}_{I} -set in X, then T is a pre_{I}^{*} -open subset of X.

Proof. Let *T* be an \mathcal{RPC}_{I} -set in *X*. This implies that there exist a regular open subset *S* and a pre^{*}_I-clopen subset *N* of *X* such that $T = S \cap N$. We have

 $T = S \cap N$

- \subset $S \cap Int^*(Cl(N))$
- = Int^{*}(S \cap Cl(N))
- \subset Int^{*}(Cl(S \cap N))
- = Int^{*}(Cl(T)).

It follows that $T \subset Int^*(Cl(T))$. Thus, $T = S \cap N$ is a pre^{*}-open subset of *X*.

Remark 2.7. Theorem 2.6 is not reversible as shown in the following example.

Example 2.8. Let $X = \{x, y, z, w\}$, $\tau = \{X, \emptyset, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $I = \{\emptyset, \{x\}, \{w\}, \{x, w\}\}$. Then $T = \{x, y, z\}$ is a pre^{*}₁-open subset of X but it is not an \mathcal{RPC}_{I} -set in X.

Remark 2.9. Let (X, τ, I) be an ideal topological space and $T \subset X$. The following properties hold:

- (1) If T is a regular open subset of X, then T is an \mathcal{RPC}_{I} -set.
- (2) If T is a pre_1^* -clopen subset of X, then T is an \mathcal{RPC}_I -set.
- (3) These implications are not reversible as shown in the following example.

Example 2.10. Suppose that $X = \{x, y, z, w\}$, $\tau = \{X, \emptyset, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $I = \{\emptyset, \{x\}, \{w\}, \{x, w\}\}$. Then $T = \{x, y, w\}$ is an \mathcal{RPC}_{I} -set in X but it is not a regular open subset of X. Meanwhile, $N = \{y, z\}$ is an \mathcal{RPC}_{I} -set in X but it is not a pre^{*}_I-clopen subset of X.

Remark 2.11. Let (X, τ, I) be an ideal topological space and $T \subset X$. The following diagram holds for T by Remark 2.9 and Theorem 2.6:

a pre^{*}_I-open set a pre^{*}_I-clopen set \longrightarrow an \mathcal{RPC}_{I} -set \uparrow a regular open set

Theorem 2.12. *The following properties are equivalent for a subset T of an ideal topological space* (X, τ , *I*):

(1) *T* is a pre_1^* -clopen subset of *X*,

(2) *T* is an \mathcal{RPC}_{I} -set and a pre^{*}₁-closed subset of *X*,

(3) *T* is an \mathcal{RPC}_{I} -set and a weakly I_{rq} -closed subset of X.

Proof. (1) \Rightarrow (2) : Let *T* be a pre^{*}_{*I*}-clopen subset of *X*. By Remark 2.9, *T* is an \mathcal{RPC}_{I} -set and also a pre^{*}_{*I*}-closed subset of *X*.

(2) \Rightarrow (3) : Let *T* be an \mathcal{RPC}_{I} -set and a pre^{*}_I-closed subset of *X*. By Remark 1.3, *T* is a weakly I_{rg} -closed subset of *X*.

 $(3) \Rightarrow (1)$: Let *T* be an \mathcal{RPC}_I -set and a weakly I_{rg} -closed subset of *X*. Since *T* is an \mathcal{RPC}_I -set, then there exist a regular open subset *S* of *X* and a pre^{*}_I-clopen subset *N* of *X* such that $T = S \cap N$. This implies that *T* is an \mathcal{RP}_I -set in *X*. Since *T* is an \mathcal{RP}_I -set and a weakly I_{rg} -closed subset of *X*, by Theorem 2.4, *T* is a pre^{*}_I-closed subset of *X*. On the other hand, since *T* is an \mathcal{RPC}_I -set in *X*, it follows from Theorem 2.6 that *T* is a pre^{*}_I-open subset of *X*. Thus, *T* is a pre^{*}_I-clopen subset of *X*. \Box

Definition 2.13. A subset *T* of an ideal topological space (X, τ, I) is said to be an $\mathcal{R}C_I$ -set if there exist a regular open subset *S* and an *I*-*R* closed subset *N* of *X* such that $T = S \cap N$.

Remark 2.14. Let (X, τ, I) be an ideal topological space and $T \subset X$. The following properties hold:

(1) If T is an I-R closed subset of X, then T is an $\mathcal{R}C_I$ -set

(2) If T is a regular open subset of X, then T is an $\mathcal{R}C_{I}$ -set.

(3) These implications are not reversible as shown in the following example.

Example 2.15. Let $X = \{x, y, z, w\}$, $\tau = \{X, \emptyset, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $I = \{\emptyset, \{x\}, \{w\}, \{x, w\}\}$. Then $T = \{y, z\}$ is an $\mathcal{R}C_I$ -set in X but it is not an I-R closed subset of X. Also, $N = \{y, z, w\}$ is an $\mathcal{R}C_I$ -set in X but it is not a regular open subset of X.

Remark 2.16. (1) The following diagram holds for a subset T of an ideal topological space (X, τ, I) :

an \mathcal{RC}_{I} -set \longrightarrow a strongly-I-LC set $\downarrow \qquad \checkmark$ an \mathcal{RP}_{I} -set \uparrow an \mathcal{RPC}_{I} -set

(2) These implications are not reversible as shown in the following example.

Example 2.17. Suppose that $X = \{x, y, z, w\}$, $\tau = \{X, \emptyset, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $I = \{\emptyset, \{x\}, \{w\}, \{x, w\}\}$. Then $T = \{x, w\}$ is both a strongly-*I*-LC set and an \mathcal{RP}_{I} -set in X but it is neither an \mathcal{RP}_{I} -set nor an \mathcal{RC}_{I} -set in X. Meanwhile, $N = \{x, y, w\}$ is an \mathcal{RP}_{I} -set in X but it is not a strongly-*I*-LC subset of X. The set $S = \{x, z, w\}$ is an \mathcal{RP}_{I} -set in X but it is not a strongly-*I*-LC subset of X.

Theorem 2.18. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I) :

(1) *T* is an $\mathcal{R}C_I$ -set in *X*,

- (2) *T* is an \mathcal{RP}_{I} -set and a semi-I-open subset of X,
- (3) For a regular open subset S of X, $T = S \cap Cl^*(Int(T))$.

Proof. (1) \Rightarrow (2) : Let *T* be an \mathcal{RC}_{I} -set in *X*. By Remark 2.16, *T* is an \mathcal{RP}_{I} -set in *X*.

Since *T* is an $\mathcal{R}C_I$ -set in *X*, then there exist a regular open subset *S* and a subset *N* of *X* such that $N = Cl^*(Int(N))$ and $T = S \cap N$. It follows that

$$T = S \cap N$$

$$= S \cap Cl^*(Int(N))$$

- \subset $Cl^*(S \cap Int(N))$
- $= Cl^*(Int(S \cap N))$
- $= Cl^*(Int(T)).$

We have $T \subset Cl^*(Int(T))$. Thus, *T* is a semi-*I*-open subset of *X*.

 $(2) \Rightarrow (3)$: Let *T* be an \mathcal{RP}_I -set and a semi-*I*-open subset of *X*. Since *T* is an \mathcal{RP}_I -set, it follows that there exist a regular open subset *S* and a pre^{*}_I-closed subset *N* of *X* such that $T = S \cap N$. This implies $T \subset N$. Then

we have $Cl^*(Int(T)) \subset Cl^*(Int(N))$. Since *N* is a pre^{*}_l-closed subset of *X*, then we have $Cl^*(Int(N)) \subset N$. Since *T* is a semi-*I*-open subset of *X*, then $T \subset Cl^*(Int(T))$. We have

$$T = T \cap Cl^*(Int(T))$$

- $= S \cap N \cap Cl^*(Int(T))$
- $= S \cap Cl^*(Int(T)).$

Thus, for a regular open subset *S* of *X*, we have $T = S \cap Cl^*(Int(T))$.

(3) ⇒ (1) : Let $T = S \cap Cl^*(Int(T))$ for a regular open subset S of X. We have $Cl^*(Int(T)) = Cl^*(Int(Cl^*(Int(T))))$. Consequently, T is an $\mathcal{R}C_I$ -set in X. \Box

Definition 2.19. Let (X, τ, I) be an ideal topological space and $T \subset X$. The pre_I^* -closure of T is defined by the intersection of all pre_I^* -closed sets of X containing T and is denoted by $p_I^*Cl(T)$.

Theorem 2.20. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I) :

- (1) *T* is an \mathcal{RP}_I -set in *X*,
- (2) For a regular open subset S of X, $T = S \cap p_I^*Cl(T)$

Proof. (1) \Rightarrow (2) : Let *T* be an \mathcal{RP}_I -set in *X*. This implies that there exist a regular open subset *S* and a pre^{*}_{*I*}-closed subset *N* of *X* such that $T = S \cap N$. We have $T \subset N$. This implies $T \subset p_I^*Cl(T) \subset N$. Consequently, we have

$$T = T \cap p_I^*Cl(T) = S \cap N \cap p_I^*Cl(T) = S \cap p_I^*Cl(T).$$

Thus, $T = S \cap p_I^* Cl(T)$ for a regular open subset *S* of *X*.

(2) ⇒ (1) : Let $T = S \cap p_I^*Cl(T)$ for a regular open subset *S* of *X*. We have $p_I^*Cl(T) \subset N$, for any pre^{*}_I-closed set *N* containing *T*. This implies

 $Cl^*(Int(p_I^*Cl(T))) \subset Cl^*(Int(N)) \subset N.$

It follows that $Cl^*(Int(p_1^*Cl(T))) \subset \cap \{N : T \subset N, N \text{ is } \text{pre}_l^*\text{-closed}\}$. Consequently, $Cl^*(Int(p_l^*Cl(T))) \subset p_l^*Cl(T)$. Thus, $p_l^*Cl(T)$ is a $\text{pre}_l^*\text{-closed}$ subset of *X* and hence *T* is an \mathcal{RP}_l -set in *X*. \Box

Theorem 2.21. Suppose that (X, τ, I) is an ideal topological space and $T \subset X$. If T is an \mathcal{RP}_I -set in X, then $p_I^*Cl(T)\setminus T$ is a pre $_I^*$ -closed subset of X.

Proof. Let *T* be an \mathcal{RP}_I -set in *X*. This implies $T = S \cap p_I^*Cl(T)$ for a regular open subset *S* of *X* by Theorem 2.20. It follows that

 $p_{I}^{*}Cl(T)\backslash T = p_{I}^{*}Cl(T)\backslash (S \cap p_{I}^{*}Cl(T)) = p_{I}^{*}Cl(T) \cap (X\backslash (S \cap p_{I}^{*}Cl(T)))$ $= p_{I}^{*}Cl(T) \cap ((X\backslash S) \cup (X\backslash p_{I}^{*}Cl(T)))$ $= (p_{I}^{*}Cl(T) \cap (X\backslash S)) \cup (p_{I}^{*}Cl(T) \cap (X\backslash p_{I}^{*}Cl(T)))$

- $= (p_I C l(1) + (X \setminus S)) \cup (p_I C l(1) + (X \setminus p_I C l(1)))$
- $= p_I^* Cl(T) \cap (X \backslash S).$

We have $p_I^*Cl(T) \setminus T = p_I^*Cl(T) \cap (X \setminus S)$. Thus, $p_I^*Cl(T) \setminus T$ is a pre^{*}-closed subset of X. \Box

Theorem 2.22. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I) :

- (1) *T* is an $\mathcal{R}C_I$ -set in *X*,
- (2) *T* is a strongly-*I*-LC set and a semi-*I*-open subset of *X*.

Proof. (1) \Rightarrow (2) : Suppose that *T* is an $\mathcal{R}C_I$ -set in *X*. It follows from Remark 2.16 and Theorem 2.18 that *T* is a strongly-*I*-*LC* set and a semi-*I*-open subset of *X*.

(2) \Rightarrow (1) : Let *T* be a strongly-*I*-*LC* set and a semi-*I*-open subset of *X*. It follows from Remark 2.16 that *T* is an \mathcal{RP}_I -set in *X*. Since *T* is an \mathcal{RP}_I -set and a semi-*I*-open subset of *X*, by Theorem 2.18, *T* is an \mathcal{RC}_I -set in *X*. \Box

In the next two theorems, we have obtained some characterizations of the notion of *I-R* closed sets.

Theorem 2.23. *The following properties are equivalent for a subset* T *of an ideal topological space* (X, τ, I):

(1) T is an I-R closed subset of X,

(2) *T* is a strongly-*I*-LC set, an I_g -closed subset and a semi-*I*-open subset of *X*,

(3) T is a strongly-I-LC set, an I_{rg} -closed subset and a semi-I-open subset of X,

(4) T is a strongly-I-LC set, a weakly I_{rq} -closed subset and a semi-I-open subset of X,

(5) *T* is an \mathcal{RP}_{I} -set, a weakly I_{rg} -closed subset and a semi-I-open subset of *X*.

Proof. (1) \Rightarrow (2) : Let *T* be an *I*-*R* closed subset of *X*. Since *T* is an *I*-*R* closed set, then *T* is a \star -closed subset and a semi-*I*-open subset of *X*. This implies that *T* is a strongly-*I*-*LC* set in *X*. Also, since *T* is *I*-*R* closed set, by Remark 1.3, *T* is an *I*_{*q*}-closed subset of *X*.

 $(2) \Rightarrow (3) \Rightarrow (4)$: It follows from Remark 1.3.

(4) \Rightarrow (5) : Since *T* is a strongly-*I*-*LC* subset of *X*, by Remark 2.16, *T* is an \mathcal{RP}_I -set in *X*.

 $(5) \Rightarrow (1)$: Suppose that *T* is an \mathcal{RP}_I -set, a weakly I_{rg} -closed subset and a semi-*I*-open subset of *X*. Since *T* is a semi-*I*-open subset of *X*, we have $T \subset Cl^*(Int(T))$. Since *T* is an \mathcal{RP}_I -set and a weakly I_{rg} -closed subset of *X*, by Theorem 2.4, *T* is a pre^{*}_I-closed subset of *X*. It follows that $Cl^*(Int(T)) \subset T$. Consequently, we have $T = Cl^*(Int(T))$. Thus, *T* is an *I*-*R* closed subset of *X*. \Box

Theorem 2.24. *The following properties are equivalent for a subset T of an ideal topological space* (*X*, τ , *I*)*:*

(1) *T* is an I-R closed subset of *X*,

(2) *T* is an \mathcal{RC}_{I} -set and an I_{g} -closed subset of *X*.

(3) *T* is an \mathcal{RC}_{I} -set and an I_{rg} -closed subset of *X*.

(4) *T* is an $\mathcal{R}C_I$ -set and a pre^{*}_I-closed subset of *X*.

(5) *T* is an $\mathcal{R}C_I$ -set and a weakly I_{rq} -closed subset of *X*.

Proof. (1) \Rightarrow (2) : Since *T* is an *I*-*R* closed subset of *X*, by Remark 1.3 and 2.14, *T* is an *RC*_{*I*}-set and an I_q -closed subset of *X*.

 $(2) \Rightarrow (3) \Rightarrow (5)$: It follows from the fact that any I_g -closed subset and any I_{rg} -closed subset of X is a weakly I_{rg} -closed subset of X by Remark 1.3.

(1) \Rightarrow (4) : Since *T* is an *I*-*R* closed subset of *X*, by Remark 2.14, *T* is an \mathcal{RC}_I -set and a pre^{*}_I-closed subset of *X*.

(4) \Rightarrow (5) : By Remark 1.3, *T* is a weakly I_{rq} -closed subset of *X*.

 $(5) \Rightarrow (1)$: Let *T* be an \mathcal{RC}_I -set and a weakly I_{rg} -closed subset of *X*. It follows from Theorem 2.18 that *T* is an \mathcal{RP}_I -set and a semi-*I*-open subset of *X*. This implies by Theorem 2.23 that *T* is an *I*-*R* closed subset of *X*. \Box

3. Decompositions and Continuities in Ideal Spaces

Definition 3.1. Suppose that (X, τ, I) is an ideal topological space. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called pre_I^* -continuous (resp. P_I^*C -continuous, $\mathcal{RP}C_I$ -continuous, WI_{rg} -continuous, \mathcal{RP}_I -continuous) if $f^{-1}(T)$ is a pre_I^* -closed subset (resp. a pre_I^* -clopen subset, an $\mathcal{RP}C_I$ -set, a weakly I_{rg} -closed subset, an \mathcal{RP}_I -set) of X for each closed subset T of Y.

Theorem 3.2. Suppose that (X, τ, I) is an ideal topological space and $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is a function. Then the following properties are equivalent for f:

(1) f is pre_{I}^{*} -continuous,

(3) f is \mathcal{RP}_{I} -continuous and WI_{rq} -continuous.

Proof. It follows from Theorem 2.4. \Box

Theorem 3.3. Suppose that (X, τ, I) is an ideal topological space and $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is a function. Then the following properties are equivalent for f:

(1) f is P_I^*C -continuous,

(3) f is \mathcal{RPC}_{I} -continuous and pre_{I}^{*} -continuous,

(3) f is \mathcal{RPC}_{I} -continuous and WI_{rq} -continuous.

Proof. It follows from Theorem 2.12. \Box

Definition 3.4. Suppose that (X, τ, I) is an ideal topological space. A function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is called

(1) $\mathcal{R}C_I$ -continuous if $f^{-1}(T)$ is an $\mathcal{R}C_I$ -set in X for each closed subset T of Y.

(2) strongly-I-LC-continuous [6] if $f^{-1}(T)$ is a strongly-I-LC set in X for each closed subset T of Y.

Remark 3.5. (1) Suppose that (X, τ, I) is an ideal topological space and $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is a function. Then we have the following diagram for f by using the diagram in Remark 2.16 (1) and Definitions 3.1 and 3.4.

 $\begin{array}{ccc} \mathcal{R}C_{I}\text{-continuous} & \longrightarrow & strongly\text{-}I\text{-}LC\text{-continuous} \\ & \downarrow & \swarrow \\ \mathcal{R}\mathcal{P}_{I}\text{-continuous} \\ & \uparrow \\ \mathcal{R}\mathcal{P}C_{I}\text{-continuous} \end{array}$

(2) None of these implications is reversible as shown by the following example.

Example 3.6. Suppose that $X = \{x, y, z, w\}$, $\tau = \{X, \emptyset, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $I = \{\emptyset, \{x\}, \{w\}, \{x, w\}\}$. Then the function $f : (X, \tau, I) \rightarrow (X, \tau)$, defined by f(x) = w, f(y) = z, f(z) = y, f(w) = w is both strongly-*I*-LC-continuous and \mathcal{RP}_{I} -continuous but f is neither \mathcal{RP}_{I} -continuous nor \mathcal{RC}_{I} -continuous. The function $g : (X, \tau, I) \rightarrow (X, \tau)$, defined by g(x) = y, g(y) = z, g(z) = x, g(w) = y is \mathcal{RP}_{I} -continuous but g is not strongly-*I*-LC-continuous. The function $h : (X, \tau, I) \rightarrow (X, \tau)$, defined by h(x) = y, h(y) = x, h(z) = z, h(w) = z is \mathcal{RP}_{I} -continuous but h is not strongly-*I*-LC-continuous.

Definition 3.7. Suppose that (X, τ, I) is an ideal topological space. A function $f : (X, \tau, I) \to (Y, \sigma)$ is called contra semi-I-continuous [9] (resp. IR-continuous, I_{rg} -continuous [6], I_{g} -continuous [6]) if $f^{-1}(T)$ is a semi-I-open subset (resp. an I-R-closed subset, an I_{rg} -closed subset, an I_{q} -closed subset) of X for each closed subset T of Y.

Theorem 3.8. Suppose that (X, τ, I) is an ideal topological space and $f : (X, \tau, I) \rightarrow (Y, \sigma)$ is a function. Then the following properties are equivalent for f:

(1) f is $\mathcal{R}C_I$ -continuous,

(2) f is strongly-I-LC-continous and contra semi-I-continuous,

(3) f is \mathcal{RP}_{I} -continuous and contra semi-I-continuous.

Proof. It follows from Theorems 2.18 and 2.22. \Box

Theorem 3.9. Let (X, τ, I) be an ideal topological space. For a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$, the following properties are equivalent:

(1) f is IR-continuous,

(2) f is $\mathcal{R}C_{I}$ -continuous and I_{q} -continuous,

(3) f is $\mathcal{R}C_I$ -continuous and I_{ra} -continuous,

(4) f is $\mathcal{R}C_I$ -continuous and pre_I^* -continuous,

(5) f is $\mathcal{R}C_I$ -continuous and WI_{rq} -continuous.

Proof. It follows from Theorem 2.24. \Box

Acknowledgements. We would like to express our sincere gratitudes to the Referees.

References

- [1] A. Acikgoz and S. Yuksel, Some new sets and decompositions of A_{I-R}-continuity, α-I-continuity, continuity via idealization, Acta Math. Hungar., 114 (1-2) (2007), 79-89.
- [2] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49 (1999), 395-401.
- [3] E. Ekici, On \mathcal{AC}_I -sets, \mathcal{BC}_I -sets, β_I^* -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform., 20 (2011), No. 1, 47-54.
- [4] E. Ekici and S. Özen, A generalized class of τ^* in ideal spaces, Filomat, 27 (4) (2013), 529-535.
- [5] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341-349.
- [6] V. Inthumathi, S. Krishnaprakash and M. Rajamani, Strongly-1-locally closed sets and decompositions of +-continuity, Acta Math. Hungar., 130 (4) (2011), 358-362.
- [7] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [8] K. Kuratowski, Topology, Vol. I, Academic Press, NewYork, 1966.
- [9] J. M. Mustafa, Contra semi-I-continuous functions, Hacettepe Journal of Mathematics and Statistics, 39 (2) (2010), 191-196.
- [10] M. Navaneethakrishnan, J. P. Joseph and D. Sivaraj, Ig-normal and Ig-regular spaces, Acta Math. Hungar., 125 (4) (2009), 327-340. [11] M. H. Stone, Applications of the theory of Boolean rings to general topology, TAMS, 41 (1937), 375-381.