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Abstract. The aim of the present paper is to introduce and study the notions of RPI-sets, RPCI-sets and
RCI-sets. Properties of RPI-sets, RPCI-sets and RCI-sets are investigated. Also, various decompositions in
ideal spaces are established via generalized closedness with RPI-sets, RPCI-sets and RCI-sets.

1. Introduction and Preliminaries

Recently, the notions of weakly Ir1-closed sets [4], strongly-I-LC sets [6], pre∗I-open sets [3] and I-R
closed sets [1] and properties of them have been introduced and studied in the literature. In the present
paper, the notions of RPI-sets, RPCI-sets and RCI-sets and properties of RPI-sets, RPCI-sets and RCI-
sets are introduced and studied. Meanwhile, various decompositions in ideal spaces are established via
generalized closedness with the notions of RPI-sets, RPCI-sets and RCI-sets.

Throughout the present paper, (X, τ) or (Y, σ) represent topological space on which no separation axioms
are assumed unless explicitly stated. The closure and the interior of a subset T of a topological space X will
be denoted by Cl(T) and Int(T), respectively.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (1) If S ∈ I
and N ⊂ S, then N ∈ I, (2) If S ∈ I and N ∈ I, then S∪N ∈ I [8]. Let (X, τ) be a topological space with an ideal
I on X. A set operator (.)∗ : P(X)→ P(X) where P(X) is the set of all subsets of X, said to be a local function
[8] of S with respect to τ and I is defined as follows:

S∗(I, τ) = {x ∈ X : N ∩ S < I for each N ∈ τ(x)}

where τ(x) = {N ∈ τ : x ∈ N} for S ⊂ X.

A Kuratowski closure operator Cl∗(.) for a topology τ∗(I, τ), said to be the ?-topology and finer than τ, is
defined by Cl∗(S) = S ∪ S∗(I, τ) [7]. They are denoted by S∗ for S∗(I, τ) and τ∗ for τ∗(I, τ). Meanwhile, (X, τ, I)
is called an ideal topological space or simply an ideal space for an ideal I on X [8].

A subset T of a topological space (X, τ) is called regular open [11] (resp. regular closed [11]) if T =
Int(Cl(T)) (resp. T = Cl(Int(T))).
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Definition 1.1. A subset T of an ideal topological space (X, τ, I) is called
(1) a strongly-I-LC set [6] if there exist a regular open subset S and a?-closed subset N of X such that T = S∩N.
(2) I1-closed [2] if T∗ ⊂ N whenever T ⊂ N and N is an open subset of X.
(3) semi-I-open [5] if T ⊂ Cl∗(Int(T)).
(4) Ir1-closed [10] if T∗ ⊂ N whenever T ⊂ N and N is a regular open subset of X.
(5) I1-open [2] (resp. Ir1-open [10]) if X\T is an I1-closed subset (resp. an Ir1-closed subset) of X.

Definition 1.2. Let (X, τ, I) be an ideal topological space. A subset T of (X, τ, I) is called
(1) a weakly Ir1-closed set [4] if (Int(T))∗ ⊂ N whenever T ⊂ N and N is a regular open subset of X.
(2) a weakly Ir1-open set [4] if X\T is a weakly Ir1-closed subset of X.
(3) pre∗I-open [3] if T ⊂ Int∗(Cl(T)).
(4) pre∗I-closed [3] if X\T is a pre∗I-open subset of X.
(5) I-R closed [1] if T = Cl∗(Int(T)).

Remark 1.3. ([4]) The following diagram holds for a subset T of an ideal topological space (X, τ, I):

an I1-closed set −→ an Ir1-closed set −→ a weakly Ir1-closed set
↑ ↑

a ? -closed set −→ a pre∗I-closed set
↑

an I-R closed set

Theorem 1.4. ([4]) The following properties are equivalent for a subset T of an ideal topological space (X, τ, I):
(1) T is a weakly Ir1-closed subset of X,
(2) Cl∗(Int(T)) ⊂ S whenever T ⊂ S and S is a regular open subset of X.

2. Decompositions in Ideal Spaces

Definition 2.1. A subset T of an ideal topological space (X, τ, I) is said to be an RPI-set if there exist a regular open
subset S and a pre∗I-closed subset N of X such that T = S ∩N.

Remark 2.2. Let (X, τ, I) be an ideal topological space and T ⊂ X. The following properties hold:
(1) If T is a pre∗I-closed subset of X, then T is an RPI-set
(2) If T is a regular open subset of X, then T is an RPI-set.
(3) These implications are not reversible as shown in the following example.

Example 2.3. Suppose that X = {x, y, z,w}, τ = {X,∅, {x}, {y, z}, {x, y, z}} and I = {∅, {x}, {w}, {x,w}}. Then
T = {y, z,w} is an RPI-set in X but it is not a regular open subset of X. Also, N = {y, z} is an RPI-set in X but it is
not a pre∗I-closed subset of X.

Theorem 2.4. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I):
(1) T is a pre∗I-closed set,
(2) T is an RPI-set and a weakly Ir1-closed set.

Proof. (1)⇒ (2) : Let T be a pre∗I-closed subset of X. Since T is a pre∗I-closed set, by Remark 1.3 and 2.2, T is
an RPI-set and a weakly Ir1-closed subset of X.

(2)⇒ (1) : Let T be an RPI-set and a weakly Ir1-closed subset of X. Since T is an RPI-set, it follows that
there exist a regular open subset S and a pre∗I-closed subset N of X such that T = S∩N. We have T ⊂ S. Since
T is a weakly Ir1-closed subset of X, then (Int(T))∗ ⊂ S. Meanwhile, we have T ⊂ N. Since N is a pre∗I-closed
set, then Cl∗(Int(T)) ⊂ N. This implies that Cl∗(Int(T)) ⊂ S ∩N = T. Thus, T is a pre∗I-closed subset of X.
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Definition 2.5. A subset T of an ideal topological space (X, τ, I) is said to be
(1) pre∗I-clopen if T is a pre∗I-open subset and a pre∗I-closed subset of X.
(2) an RPCI-set if there exist a regular open subset S and a pre∗I-clopen subset N of X such that T = S ∩N.

Theorem 2.6. Let (X, τ, I) be an ideal topological space and T ⊂ X. If T is an RPCI-set in X, then T is a pre∗I-open
subset of X.

Proof. Let T be an RPCI-set in X. This implies that there exist a regular open subset S and a pre∗I-clopen
subset N of X such that T = S ∩N. We have

T = S ∩N
⊂ S ∩ Int∗(Cl(N))
= Int∗(S ∩ Cl(N))
⊂ Int∗(Cl(S ∩N))
= Int∗(Cl(T)).

It follows that T ⊂ Int∗(Cl(T)). Thus, T = S ∩N is a pre∗I-open subset of X.

Remark 2.7. Theorem 2.6 is not reversible as shown in the following example.

Example 2.8. Let X = {x, y, z,w}, τ = {X,∅, {x}, {y, z}, {x, y, z}} and I = {∅, {x}, {w}, {x,w}}. Then T = {x, y, z} is a
pre∗I-open subset of X but it is not an RPCI-set in X.

Remark 2.9. Let (X, τ, I) be an ideal topological space and T ⊂ X. The following properties hold:
(1) If T is a regular open subset of X, then T is an RPCI-set.
(2) If T is a pre∗I-clopen subset of X, then T is an RPCI-set.
(3) These implications are not reversible as shown in the following example.

Example 2.10. Suppose that X = {x, y, z,w}, τ = {X,∅, {x}, {y, z}, {x, y, z}} and I = {∅, {x}, {w}, {x,w}}. Then
T = {x, y,w} is an RPCI-set in X but it is not a regular open subset of X. Meanwhile, N = {y, z} is an RPCI-set in
X but it is not a pre∗I-clopen subset of X.

Remark 2.11. Let (X, τ, I) be an ideal topological space and T ⊂ X. The following diagram holds for T by Remark
2.9 and Theorem 2.6:

a pre∗I-open set
↑

a pre∗I-clopen set −→ an RPCI-set
↑

a regular open set

Theorem 2.12. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I):
(1) T is a pre∗I-clopen subset of X,
(2) T is an RPCI-set and a pre∗I-closed subset of X,
(3) T is an RPCI-set and a weakly Ir1-closed subset of X.

Proof. (1)⇒ (2) : Let T be a pre∗I-clopen subset of X. By Remark 2.9, T is an RPCI-set and also a pre∗I-closed
subset of X.

(2) ⇒ (3) : Let T be an RPCI-set and a pre∗I-closed subset of X. By Remark 1.3, T is a weakly Ir1-closed
subset of X.
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(3)⇒ (1) : Let T be an RPCI-set and a weakly Ir1-closed subset of X. Since T is an RPCI-set, then there
exist a regular open subset S of X and a pre∗I-clopen subset N of X such that T = S∩N. This implies that T is
an RPI-set in X. Since T is an RPI-set and a weakly Ir1-closed subset of X, by Theorem 2.4, T is a pre∗I-closed
subset of X. On the other hand, since T is anRPCI-set in X, it follows from Theorem 2.6 that T is a pre∗I-open
subset of X. Thus, T is a pre∗I-clopen subset of X.

Definition 2.13. A subset T of an ideal topological space (X, τ, I) is said to be an RCI-set if there exist a regular open
subset S and an I-R closed subset N of X such that T = S ∩N.

Remark 2.14. Let (X, τ, I) be an ideal topological space and T ⊂ X. The following properties hold:
(1) If T is an I-R closed subset of X, then T is an RCI-set
(2) If T is a regular open subset of X, then T is an RCI-set.
(3) These implications are not reversible as shown in the following example.

Example 2.15. Let X = {x, y, z,w}, τ = {X,∅, {x}, {y, z}, {x, y, z}} and I = {∅, {x}, {w}, {x,w}}. Then T = {y, z} is an
RCI-set in X but it is not an I-R closed subset of X. Also, N = {y, z,w} is an RCI-set in X but it is not a regular open
subset of X.

Remark 2.16. (1) The following diagram holds for a subset T of an ideal topological space (X, τ, I):

an RCI-set −→ a strongly-I-LC set
↓ ↙

an RPI-set
↑

an RPCI-set

(2) These implications are not reversible as shown in the following example.

Example 2.17. Suppose that X = {x, y, z,w}, τ = {X,∅, {x}, {y, z}, {x, y, z}} and I = {∅, {x}, {w}, {x,w}}. Then
T = {x,w} is both a strongly-I-LC set and an RPI-set in X but it is neither an RPCI-set nor an RCI-set in X.
Meanwhile, N = {x, y,w} is an RPI-set in X but it is not a strongly-I-LC subset of X. The set S = {x, z,w} is an
RPCI-set in X but it is not a strongly-I-LC subset of X.

Theorem 2.18. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I):
(1) T is an RCI-set in X,
(2) T is an RPI-set and a semi-I-open subset of X,
(3) For a regular open subset S of X, T = S ∩ Cl∗(Int(T)).

Proof. (1)⇒ (2) : Let T be an RCI-set in X. By Remark 2.16, T is an RPI-set in X.
Since T is an RCI-set in X, then there exist a regular open subset S and a subset N of X such that

N = Cl∗(Int(N)) and T = S ∩N. It follows that

T = S ∩N
= S ∩ Cl∗(Int(N))
⊂ Cl∗(S ∩ Int(N))
= Cl∗(Int(S ∩N))
= Cl∗(Int(T)).

We have T ⊂ Cl∗(Int(T)). Thus, T is a semi-I-open subset of X.
(2)⇒ (3) : Let T be an RPI-set and a semi-I-open subset of X. Since T is an RPI-set, it follows that there

exist a regular open subset S and a pre∗I-closed subset N of X such that T = S∩N. This implies T ⊂ N. Then
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we have Cl∗(Int(T)) ⊂ Cl∗(Int(N)). Since N is a pre∗I-closed subset of X, then we have Cl∗(Int(N)) ⊂ N. Since
T is a semi-I-open subset of X, then T ⊂ Cl∗(Int(T)). We have

T = T ∩ Cl∗(Int(T))
= S ∩N ∩ Cl∗(Int(T))
= S ∩ Cl∗(Int(T)).

Thus, for a regular open subset S of X, we have T = S ∩ Cl∗(Int(T)).
(3)⇒ (1) : Let T = S∩Cl∗(Int(T)) for a regular open subset S of X. We have Cl∗(Int(T)) = Cl∗(Int(Cl∗(Int(T)))).

Consequently, T is an RCI-set in X.

Definition 2.19. Let (X, τ, I) be an ideal topological space and T ⊂ X. The pre∗I-closure of T is defined by the
intersection of all pre∗I-closed sets of X containing T and is denoted by p∗ICl(T).

Theorem 2.20. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I):
(1) T is an RPI-set in X,
(2) For a regular open subset S of X, T = S ∩ p∗ICl(T)

Proof. (1) ⇒ (2) : Let T be an RPI-set in X. This implies that there exist a regular open subset S and a
pre∗I-closed subset N of X such that T = S∩N. We have T ⊂ N. This implies T ⊂ p∗ICl(T) ⊂ N. Consequently,
we have

T = T ∩ p∗ICl(T) = S ∩N ∩ p∗ICl(T) = S ∩ p∗ICl(T).

Thus, T = S ∩ p∗ICl(T) for a regular open subset S of X.
(2)⇒ (1) : Let T = S∩ p∗ICl(T) for a regular open subset S of X. We have p∗ICl(T) ⊂ N, for any pre∗I-closed

set N containing T. This implies

Cl∗(Int(p∗ICl(T))) ⊂ Cl∗(Int(N)) ⊂ N.

It follows that Cl∗(Int(p∗ICl(T))) ⊂ ∩{N : T ⊂ N, N is pre∗I-closed}. Consequently, Cl∗(Int(p∗ICl(T))) ⊂ p∗ICl(T).
Thus, p∗ICl(T) is a pre∗I-closed subset of X and hence T is an RPI-set in X.

Theorem 2.21. Suppose that (X, τ, I) is an ideal topological space and T ⊂ X. If T is anRPI-set in X, then p∗ICl(T)\T
is a pre∗I-closed subset of X.

Proof. Let T be an RPI-set in X. This implies T = S ∩ p∗ICl(T) for a regular open subset S of X by Theorem
2.20. It follows that

p∗ICl(T)\T = p∗ICl(T)\(S ∩ p∗ICl(T)) = p∗ICl(T) ∩ (X\(S ∩ p∗ICl(T)))
= p∗ICl(T) ∩ ((X\S) ∪ (X\p∗ICl(T)))
= (p∗ICl(T) ∩ (X\S)) ∪ (p∗ICl(T) ∩ (X\p∗ICl(T)))
= p∗ICl(T) ∩ (X\S).

We have p∗ICl(T)\T = p∗ICl(T) ∩ (X\S). Thus, p∗ICl(T)\T is a pre∗I-closed subset of X.

Theorem 2.22. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I):
(1) T is an RCI-set in X,
(2) T is a strongly-I-LC set and a semi-I-open subset of X.

Proof. (1)⇒ (2) : Suppose that T is an RCI-set in X. It follows from Remark 2.16 and Theorem 2.18 that T is
a strongly-I-LC set and a semi-I-open subset of X.

(2)⇒ (1) : Let T be a strongly-I-LC set and a semi-I-open subset of X. It follows from Remark 2.16 that
T is an RPI-set in X. Since T is an RPI-set and a semi-I-open subset of X, by Theorem 2.18, T is an RCI-set
in X.
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In the next two theorems, we have obtained some characterizations of the notion of I-R closed sets.

Theorem 2.23. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I):
(1) T is an I-R closed subset of X,
(2) T is a strongly-I-LC set, an I1-closed subset and a semi-I-open subset of X,
(3) T is a strongly-I-LC set, an Ir1-closed subset and a semi-I-open subset of X,
(4) T is a strongly-I-LC set, a weakly Ir1-closed subset and a semi-I-open subset of X,
(5) T is an RPI-set, a weakly Ir1-closed subset and a semi-I-open subset of X.

Proof. (1)⇒ (2) : Let T be an I-R closed subset of X. Since T is an I-R closed set, then T is a ?-closed subset
and a semi-I-open subset of X. This implies that T is a strongly-I-LC set in X. Also, since T is I-R closed
set, by Remark 1.3, T is an I1-closed subset of X.

(2)⇒ (3)⇒ (4) : It follows from Remark 1.3.
(4)⇒ (5) : Since T is a strongly-I-LC subset of X, by Remark 2.16, T is an RPI-set in X.
(5)⇒ (1) : Suppose that T is an RPI-set, a weakly Ir1-closed subset and a semi-I-open subset of X. Since

T is a semi-I-open subset of X, we have T ⊂ Cl∗(Int(T)). Since T is an RPI-set and a weakly Ir1-closed subset
of X, by Theorem 2.4, T is a pre∗I-closed subset of X. It follows that Cl∗(Int(T)) ⊂ T. Consequently, we have
T = Cl∗(Int(T)). Thus, T is an I-R closed subset of X.

Theorem 2.24. The following properties are equivalent for a subset T of an ideal topological space (X, τ, I):
(1) T is an I-R closed subset of X,
(2) T is an RCI-set and an I1-closed subset of X.
(3) T is an RCI-set and an Ir1-closed subset of X.
(4) T is an RCI-set and a pre∗I-closed subset of X.
(5) T is an RCI-set and a weakly Ir1-closed subset of X.

Proof. (1) ⇒ (2) : Since T is an I-R closed subset of X, by Remark 1.3 and 2.14, T is an RCI-set and an
I1-closed subset of X.

(2) ⇒ (3) ⇒ (5) : It follows from the fact that any I1-closed subset and any Ir1-closed subset of X is a
weakly Ir1-closed subset of X by Remark 1.3.

(1)⇒ (4) : Since T is an I-R closed subset of X, by Remark 2.14, T is an RCI-set and a pre∗I-closed subset
of X.

(4)⇒ (5) : By Remark 1.3, T is a weakly Ir1-closed subset of X.
(5)⇒ (1) : Let T be an RCI-set and a weakly Ir1-closed subset of X. It follows from Theorem 2.18 that T

is an RPI-set and a semi-I-open subset of X. This implies by Theorem 2.23 that T is an I-R closed subset of
X.

3. Decompositions and Continuities in Ideal Spaces

Definition 3.1. Suppose that (X, τ, I) is an ideal topological space. A function f : (X, τ, I) → (Y, σ) is called pre∗I-
continuous (resp. P∗IC-continuous, RPCI-continuous, WIr1-continuous, RPI-continuous) if f−1(T) is a pre∗I-closed
subset (resp. a pre∗I-clopen subset, an RPCI-set, a weakly Ir1-closed subset, an RPI-set) of X for each closed subset T
of Y.

Theorem 3.2. Suppose that (X, τ, I) is an ideal topological space and f : (X, τ, I) → (Y, σ) is a function. Then the
following properties are equivalent for f :

(1) f is pre∗I-continuous,
(3) f is RPI-continuous and WIr1-continuous.

Proof. It follows from Theorem 2.4.
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Theorem 3.3. Suppose that (X, τ, I) is an ideal topological space and f : (X, τ, I) → (Y, σ) is a function. Then the
following properties are equivalent for f :

(1) f is P∗IC-continuous,
(3) f is RPCI-continuous and pre∗I-continuous,
(3) f is RPCI-continuous and WIr1-continuous.

Proof. It follows from Theorem 2.12.

Definition 3.4. Suppose that (X, τ, I) is an ideal topological space. A function f : (X, τ, I)→ (Y, σ) is called
(1) RCI-continuous if f−1(T) is an RCI-set in X for each closed subset T of Y.
(2) strongly-I-LC-continuous [6] if f−1(T) is a strongly-I-LC set in X for each closed subset T of Y.

Remark 3.5. (1) Suppose that (X, τ, I) is an ideal topological space and f : (X, τ, I)→ (Y, σ) is a function. Then we
have the following diagram for f by using the diagram in Remark 2.16 (1) and Definitions 3.1 and 3.4.

RCI-continuous −→ strongly-I-LC-continuous
↓ ↙

RPI-continuous
↑

RPCI-continuous

(2) None of these implications is reversible as shown by the following example.

Example 3.6. Suppose that X = {x, y, z,w}, τ = {X,∅, {x}, {y, z}, {x, y, z}} and I = {∅, {x}, {w}, {x,w}}. Then the
function f : (X, τ, I)→ (X, τ), defined by f (x) = w, f (y) = z, f (z) = y, f (w) = w is both strongly-I-LC-continuous
and RPI-continuous but f is neither RPCI-continuous nor RCI-continuous. The function 1 : (X, τ, I) → (X, τ),
defined by 1(x) = y, 1(y) = z, 1(z) = x, 1(w) = y is RPI-continuous but 1 is not strongly-I-LC-continuous. The
function h : (X, τ, I) → (X, τ), defined by h(x) = y, h(y) = x, h(z) = z, h(w) = z is RPCI-continuous but h is not
strongly-I-LC-continuous.

Definition 3.7. Suppose that (X, τ, I) is an ideal topological space. A function f : (X, τ, I) → (Y, σ) is called contra
semi-I-continuous [9] (resp. IR-continuous, Ir1-continuous [6], I1-continuous [6]) if f−1(T) is a semi-I-open subset
(resp. an I-R-closed subset, an Ir1-closed subset, an I1-closed subset) of X for each closed subset T of Y.

Theorem 3.8. Suppose that (X, τ, I) is an ideal topological space and f : (X, τ, I) → (Y, σ) is a function. Then the
following properties are equivalent for f :

(1) f is RCI-continuous,
(2) f is strongly-I-LC-continous and contra semi-I-continuous,
(3) f is RPI-continuous and contra semi-I-continuous.

Proof. It follows from Theorems 2.18 and 2.22.

Theorem 3.9. Let (X, τ, I) be an ideal topological space. For a function f : (X, τ, I)→ (Y, σ), the following properties
are equivalent:

(1) f is IR-continuous,
(2) f is RCI-continuous and I1-continuous,
(3) f is RCI-continuous and Ir1-continuous,
(4) f is RCI-continuous and pre∗I-continuous,
(5) f is RCI-continuous and WIr1-continuous.

Proof. It follows from Theorem 2.24.
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